Early Moon formation inferred from hafnium–tungsten systematics (2024)

References

  1. Canup, R. M. Forming a moon with an Earth-like composition via a giant impact. Science 338, 1052–1055 (2012).

    Article Google Scholar

  2. Melosh, H. J. New approaches to the Moon’s isotopic crisis. Phil. Trans. Royal Soc. A 372, 20130168 (2014).

    Article Google Scholar

  3. Zhang, J., Dauphas, N., Davis, A. M., Leya, I. & Fedkin, A. The proto-Earth as a significant source of lunar material. Nat. Geosci. 5, 251–255 (2012).

    Article Google Scholar

  4. Weyer, S. et al. Iron isotope fractionation during planetary differentiation. Earth Planet. Sci. Lett. 240, 251–264 (2005).

    Article Google Scholar

  5. Armytage, R., Georg, R., Williams, H. & Halliday, A. Silicon isotopes in lunar rocks: implications for the Moon’s formation and the early history of the Earth. Geochim. Cosmochim. Acta 77, 504–514 (2012).

    Article Google Scholar

  6. Dauphas, N., Burkhardt, C., Warren, P. H. & Fang-Zhen, T. Geochemical arguments for an Earth-like Moon-forming impactor. Phil. Trans. Royal Soc. A 372, 20130244 (2014).

    Article Google Scholar

  7. Barboni, M. et al. Early formation of the Moon 4.51 billion years ago. Sci. Adv. 3, e1602365 (2017).

    Article Google Scholar

  8. Jacobson, S. A. et al. Highly siderophile elements in Earth’s mantle as a clock for the Moon-forming impact. Nature 508, 84–87 (2014).

    Article Google Scholar

  9. Yin, Q.-Z. et al. Records of the Moon‐forming impact and the 470 Ma disruption of the L chondrite parent body in the asteroid belt from U–Pb apatite ages of Novato (L6). Meteorit. Planet. Sci. 49, 1426–1439 (2014).

    Article Google Scholar

  10. Bottke, W. et al. Dating the Moon-forming impact event with asteroidal meteorites. Science 348, 321–323 (2015).

    Article Google Scholar

  11. Yin, Q. et al. A short timescale for terrestrial planet formation from Hf–W chronometry of meteorites. Nature 418, 949–952 (2002).

    Article Google Scholar

  12. Moynier, F. et al. Coupled 182W–142Nd constraint for early Earth differentiation. Proc. Natl Acad. Sci. USA 107, 10810–10814 (2010).

    Article Google Scholar

  13. Carlson, R. W., Borg, L. E., Gaffney, A. M. & Boyet, M. Rb–Sr, Sm–Nd and Lu–Hf isotope systematics of the lunar Mg-suite: the age of the lunar crust and its relation to the time of Moon formation. Phil. Trans. Royal Soc. A 372, 20130246 (2014).

    Article Google Scholar

  14. Connelly, J. & Bizzarro, M. Lead isotope evidence for a young formation age of the Earth–Moon system. Earth Planet. Sci. Lett. 452, 36–43 (2016).

    Article Google Scholar

  15. Borg, L. E., Connelly, J. N., Boyet, M. & Carlson, R. W. Chronological evidence that the Moon is either young or did not have a global magma ocean. Nature 477, 70–72 (2011).

    Article Google Scholar

  16. Snape, J. F. et al. Lunar basalt chronology, mantle differentiation and implications for determining the age of the Moon. Earth Planet. Sci. Lett. 451, 149–158 (2016).

    Article Google Scholar

  17. Borg, L. E., Gaffney, A. M. & Shearer, C. K. A review of lunar chronology revealing a preponderance of 4.34–4.37 Ga ages. Meteorit. Planet. Sci. 50, 715–732 (2015).

    Article Google Scholar

  18. Kruijer, T. S. & Kleine, T. Tungsten isotopes and the origin of the Moon. Earth Planet. Sci. Lett. 475, 15–24 (2017).

    Article Google Scholar

  19. Kruijer, T. S., Kleine, T., Fischer-Gödde, M. & Sprung, P. Lunar tungsten isotopic evidence for the late veneer. Nature 520, 534–537 (2015).

    Article Google Scholar

  20. Touboul, M., Puchtel, I. S. & Walker, R. J. Tungsten isotopic evidence for disproportional late accretion to the Earth and Moon. Nature 520, 530–533 (2015).

    Article Google Scholar

  21. Vockenhuber, C. et al. New half-life measurement of 182Hf: improved chronometer for the early solar system. Phys. Rev. Lett. 93, 172501 (2004).

    Article Google Scholar

  22. Münker, C. A high field strength element perspective on early lunar differentiation. Geochim. Cosmochim. Acta 74, 7340–7361 (2010).

    Article Google Scholar

  23. König, S. et al. The Earth’s tungsten budget during mantle melting and crust formation. Geochim. Cosmochim. Acta 75, 2119–2136 (2011).

    Article Google Scholar

  24. Rizo, H. et al. Preservation of Earth-forming events in the tungsten isotopic composition of modern flood basalts. Geochim. Cosmochim. Acta 175, 319–336 (2016).

    Article Google Scholar

  25. Willbold, M., Elliott, T. & Moorbath, S. The tungsten isotopic composition of the Earth’s mantle before the terminal bombardment. Nature 477, 195–198 (2011).

    Article Google Scholar

  26. Puchtel, I. S., Blichert-Toft, J., Touboul, M., Horan, M. F. & Walker, R. J. The coupled 182W–142Nd record of early terrestrial mantle differentiation. Geochem. Geophys. Geosys. 17, 2168–2193 (2016).

    Article Google Scholar

  27. Mundl, A. et al. Tungsten-182 heterogeneity in modern ocean island basalts. Science 356, 66–69 (2017).

    Article Google Scholar

  28. Jones, T. D., Davies, D. R. & Sossi, P. A. Tungsten isotopes in mantle plumes: heads it’s positive, tails it’s negative. Earth Planet. Sci. Lett. 506, 255–267 (2019).

    Article Google Scholar

  29. Puchtel, I. S., Blichert-Toft, J., Touboul, M. & Walker, R. J. 182W and HSE constraints from 2.7 Ga komatiites on the heterogeneous nature of the Archean mantle. Geochim. Cosmochim. Acta 228, 1–26 (2018).

    Article Google Scholar

  30. Tusch, J. et al. Uniform 182W isotope compositions in Eoarchean rocks from the Isua region, SW Greenland: the role of early silicate differentiation and missing late veneer. Geochim. Cosmochim. Acta 257, 284–310 (2019).

    Article Google Scholar

  31. Palme, H. & Rammensee, W. The significance of W in planetary differentiation processes: evidence from new data on eucrites. Proc. Lunar Planet. Sci. 12, 949–964 (1982).

    Google Scholar

  32. Fonseca, R. O. C. et al. Redox controls on tungsten and uranium crystal/silicate melt partitioning and implications for the U/W and Th/W ratio of the lunar mantle. Earth Planet. Sci. Lett. 404, 1–13 (2014).

    Article Google Scholar

  33. Leitzke, F. L. et al. The effect of titanium on the partitioning behavior of high-field strength elements between silicates, oxides and lunar basaltic melts with applications to the origin of mare basalts. Chem. Geol. 440, 219–238 (2016).

    Article Google Scholar

  34. Leitzke, F. P. et al. Redox dependent behaviour of molybdenum during magmatic processes in the terrestrial and lunar mantle: implications for the Mo/W of the bulk silicate Moon. Earth Planet. Sci. Lett. 474, 503–515 (2017).

    Article Google Scholar

  35. Sprung, P., Kleine, T. & Scherer, E. E. Isotopic evidence for chondritic Lu/Hf and Sm/Nd of the Moon. Earth Planet. Sci. Lett. 380, 77–87 (2013).

    Article Google Scholar

  36. Snyder, G. A., Taylor, L. A. & Neal, C. R. A chemical model for generating the sources of mare basalts: combined equilibrium and fractional crystallization of the lunar magmasphere. Geochim. Cosmochim. Acta 56, 3809–3823 (1992).

    Article Google Scholar

  37. Dygert, N., Liang, Y. & Hess, P. The importance of melt TiO2 in affecting major and trace element partitioning between Fe–Ti oxides and lunar picritic glass melts. Geochim. Cosmochim. Acta 106, 134–151 (2013).

    Article Google Scholar

  38. Day, J. M. & Walker, R. J. Highly siderophile element depletion in the Moon. Earth Planet. Sci. Lett. 423, 114–124 (2015).

    Article Google Scholar

  39. Day, J. M., Pearson, D. G. & Taylor, L. A. Highly siderophile element constraints on accretion and differentiation of the Earth–Moon system. Science 315, 217–219 (2007).

    Article Google Scholar

  40. Day, J., Puchtel, I., Walker, R., James, O. & Taylor, L. Osmium abundance and isotope systematics of lunar crustal rocks and mare basalts. Lunar Planet. Sci. Conf. 39, 1071 (2008).

    Google Scholar

  41. Wade, J. & Wood, B. J. Core formation and the oxidation state of the Earth. Earth Planet. Sci. Lett. 236, 78–95 (2005).

    Article Google Scholar

  42. Wood, B., Walter, M. & Wade, J. Accretion of the Earth and segregation of its core. Nature 441, 825–833 (2006).

    Article Google Scholar

  43. Walter, M., Newsom, H., Ertel, W., Holzheid, A. in Origin of the Earth and Moon (eds Canup, R. M. & Righter, K) 265–289 (Univ. Arizona Press, 2000).

  44. Steenstra, E., Rai, N., Knibbe, J., Lin, Y. & van Westrenen, W. New geochemical models of core formation in the Moon from metal–silicate partitioning of 15 siderophile elements. Earth Planet. Sci. Lett. 441, 1–9 (2016).

    Article Google Scholar

  45. Sossi, P. A., Moynier, F. & van Zuilen, K. Volatile loss following cooling and accretion of the Moon revealed by chromium isotopes. Proc. Natl Acad. Sci. USA 115, 10920–10925 (2018).

    Article Google Scholar

  46. Weber, R. C., Lin, P.-Y., Garnero, E. J., Williams, Q. & Lognonne, P. Seismic detection of the lunar core. Science 331, 309–312 (2011).

    Article Google Scholar

  47. Khan, A., Pommier, A., Neumann, G. & Mosegaard, K. The lunar moho and the internal structure of the Moon: a geophysical perspective. Tectonophysics 609, 331–352 (2013).

    Article Google Scholar

  48. Garcia, R. F., Gagnepain-Beyneix, J., Chevrot, S. & Lognonné, P. Very preliminary reference Moon model. Phys. Earth Planet. Int. 188, 96–113 (2011).

    Article Google Scholar

  49. Rai, N. & van Westrenen, W. Lunar core formation: new constraints from metal–silicate partitioning of siderophile elements. Earth Planet. Sci. Lett. 388, 343–352 (2014).

    Article Google Scholar

  50. Newsom, H. et al. The depletion of tungsten in the bulk silicate earth: constraints on core formation. Geochim. Cosmochim. Acta 60, 1155–1169 (1996).

    Article Google Scholar

  51. Garbe-Schönberg, C.-D. Simultaneous determination of thirty-seven trace elements in twenty-eight international rock standards by ICP-MS. Geostand. Geoanal. Res. 17, 81–97 (1993).

    Article Google Scholar

  52. Münker, C., Weyer, S., Scherer, E. E. & Mezger, A. Separation of high field strength elements (Nb, Ta, Zr, Hf) and Lu from rock samples for MC-ICPMS measurements. Geochem. Geophys. Geosyst. 2, 2001GC000183 (2001).

    Article Google Scholar

  53. Kleine, T., Mezger, K., Palme, H. & Münker, C. The W isotope evolution of the bulk silicate Earth: constraints on the timing and mechanisms of core formation and accretion. Earth Planet. Sci. Lett. 228, 109–123 (2004).

    Article Google Scholar

  54. Bast, R. et al. A rapid and efficient ion-exchange chromatography for Lu–Hf, Sm–Nd, and Rb–Sr geochronology and the routine isotope analysis of sub-ng amounts of Hf by MC-ICP-MS. J. Anal. Atom Spectrom. 30, 2323–2333 (2015).

    Article Google Scholar

  55. Luo, X. M., Rehkämper, D.-C. & Lee, A. N. Halliday High precision 230Th/232Th and 234U/238U measurements using energy filtered ICP magnetic sector multiple collector mass spectrometry. Int. J. Mass Spectrom. Ion. Process. 171, 105–117 (1997).

    Article Google Scholar

  56. Richter, S. et al. New average values for the n(238U)/n(235U) isotope ratios of natural uranium standards. Int. J. Mass Spectrom. 295, 94–97 (2010).

    Article Google Scholar

  57. Smith, J. V. et al. Petrologic history of the moon inferred from petrography, mineralogy, and petrogenesis of Apollo 11 rocks. Geochim. Cosmochim. Acta 34 (Suppl.), 897–925 (1970).

    Google Scholar

  58. Warren, P. H. The magma ocean concept and lunar evolution. Annu. Rev. Earth Planet. Sci. Lett. 13, 201–240 (1985).

    Article Google Scholar

  59. Wood, J. A., Dickey, J. S., Marvin, U. B. & Powell, B. N. Lunar anorthosites and a geophysical model of the moon. Geochim. Cosmochim. Acta 34 (Suppl.), 965–988 (1970).

    Google Scholar

  60. Elardo, S. M., Draper, D. S. & Shearer, C. K. Lunar magma ocean crystallization revisited: bulk composition, early cumulate mineralogy, and the source regions of the highlands mg-suite. Geochim. Cosmochim. Acta 75, 3024–3045 (2011).

    Article Google Scholar

  61. Elkins-Tanton, L. T., van Orman, J. A., Hager, B. H. & Grove, T. L. Re-examination of the lunar magma ocean cumulate overturn hypothesis: melting or mixing is required. Earth Planet. Sci. Lett. 196, 239–249 (2002).

    Article Google Scholar

  62. Meyer, C. Jr et al. Mineralogy, chemistry, and origin of the KREEP component in soil samples from the Ocean of Storms. In Proc. 2nd Lunar Sci. Conf. Vol 1 (ed. Levinson, A. A.) 393–411 (MIT, 1971).

  63. Warren, P. H. & Wasson, J. T. The origins of KREEP. Rev. Geophys. 17, 73–88 (1979).

    Article Google Scholar

  64. Hess, P. C. & Parmentier, E. M. A model for the thermal and chemical evolution of the Moons interior: implications for the onset of mare volcanism. Earth Planet. Sci. Lett. 134, 501–514 (1995).

    Article Google Scholar

  65. Karner, J., Papike, J. J. & Shearer, C. K. Olivine from planetary basalts: chemical signatures that indicate planetary parentage and those that record igneous setting and process. Am. Mineral. 88, 806–816 (2000).

    Article Google Scholar

  66. Nicholis, M. & Rutherford, M. J. Graphite oxidation in the Apollo 17 orange glass magma: implications for the generation of a lunar volcanic gas phase. Geochim. Cosmochim. Acta 73, 5905–5917 (2009).

    Article Google Scholar

  67. Papike, J. J., Karner, J. M. & Shearer, C. K. Comparative planetary mineralogy: valence state partitioning of Cr, Fe, Ti, and V among crystallographic sites in olivine, pyroxene, and spinel from planetary basalts. Am. Mineral. 90, 277–290 (2005).

    Article Google Scholar

  68. Righter, K., Pando, K. M., Danielson, L. & Lee, C. T. Partitioning of Mo, P and other siderophile elements (Cu, Ga, Sn, Ni Co, Cr, Mn, V and W) between metal and silicate melt as a function of temperature and silicate melt composition. Earth Planet. Sci. Lett. 291, 1–9 (2010).

    Article Google Scholar

  69. Kleine, T. et al. Hf–W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochim. Cosmochim. Acta 73, 5150–5188 (2009).

    Article Google Scholar

  70. Kruijer, T., Kleine, T., Fischer-Gödde, M., Burkhardt, C. & Wieler, R. Nucleosynthetic W isotope anomalies and the Hf–W chronometry of Ca–Al-rich inclusions. Earth Planet. Sci. Lett. 403, 317–327 (2014).

    Article Google Scholar

Download references

Early Moon formation inferred from hafnium–tungsten systematics (2024)
Top Articles
Latest Posts
Article information

Author: Francesca Jacobs Ret

Last Updated:

Views: 5612

Rating: 4.8 / 5 (48 voted)

Reviews: 87% of readers found this page helpful

Author information

Name: Francesca Jacobs Ret

Birthday: 1996-12-09

Address: Apt. 141 1406 Mitch Summit, New Teganshire, UT 82655-0699

Phone: +2296092334654

Job: Technology Architect

Hobby: Snowboarding, Scouting, Foreign language learning, Dowsing, Baton twirling, Sculpting, Cabaret

Introduction: My name is Francesca Jacobs Ret, I am a innocent, super, beautiful, charming, lucky, gentle, clever person who loves writing and wants to share my knowledge and understanding with you.