Carbon content and degassing history of the lunar volcanic glasses (2024)

References

  1. Saal, A. E. et al. Volatile content of lunar volcanic glasses and the presence of water in the Moon’s interior. Nature 454, 192–195 (2008).

    Article Google Scholar

  2. Hauri, E. H., Weinreich, T., Saal, A. E., Rutherford, M. C. & Van Orman, J. A. High pre-eruptive water contents preserved in lunar melt inclusions. Science 333, 213–215 (2011).

    Article Google Scholar

  3. Saal, A. E., Hauri, E. H., Van Orman, J. A. & Rutherford, M. J. Hydrogen isotopes in lunar volcanic glasses and melt inclusions reveal a carbonaceous chondrite heritage. Science 340, 1317–1320 (2013).

    Article Google Scholar

  4. Füri, E., Deloule, E., Gurenko, A. & Marty, B. New evidence for chondritic lunar water from combined D/H and noble gas analyses of single Apollo 17 volcanic glasses. Icarus 229, 109–120 (2014).

    Article Google Scholar

  5. Sharp, Z. D., Shearer, C. K., McKeegan, K. D., Barnes, J. D. & Wang, Y. Q. The chlorine isotope composition of the Moon and implications for an anhydrous mantle. Science 329, 1050–1053 (2010).

    Article Google Scholar

  6. Shearer, C. K. et al. Origin of sulfide replacement textures in lunar breccias. Implications for vapor element transport in the lunar crust. Geochim. Cosmochim. Acta 83, 138–158 (2012).

    Article Google Scholar

  7. Saal, A. E., Hauri, E. H., Langmuir, C. H. & Perfit, M. R. Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle. Nature 419, 451–455 (2002).

    Article Google Scholar

  8. Epstein, S. & Taylor, H. P. Jr The isotopic composition and concentration of water, hydrogen, and carbon in some Apollo 15 and 16 soils and in the Apollo 17 orange soil. Geochim. Cosmochim. Acta 2, 1559–1575 (1973).

    Google Scholar

  9. Hauri, E. H., Saal, A. E., Rutherford, M. C. & Van Orman, J. A. Water in the Moon’s interior: Truth and consequences. Earth Planet. Sci. Lett. 409, 252–264 (2015).

    Article Google Scholar

  10. Marty, B. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 313–314, 56–66 (2012).

    Article Google Scholar

  11. Halliday, A. N. The origins of volatiles in the terrestrial planets. Geochim. Cosmochim. Acta 105, 146–171 (2013).

    Article Google Scholar

  12. Elkins-Tanton, L. T., Chatterjee, N. & Grove, T. L. Magmatic processes that produced lunar fire fountains. Geophys. Res. Lett. 30, 1513 (2003).

    Article Google Scholar

  13. Sato, M. The driving mechanism of lunar pyroclastic eruptions inferred from the oxygen fugacity behavior of Apollo 17 orange glass. Proc. Lunar Planet. Sci. Conf. 10, 311–325 (1979).

    Google Scholar

  14. Rutherford, M. J. & Papale, P. Origin of basalt fire-fountain eruptions on Earth versus the Moon. Geology 37, 219–222 (2009).

    Article Google Scholar

  15. Fogel, R. A. & Rutherford, M. J. Magmatic volatiles in primitive lunar glasses: I. FTIR and EPMA analyses of Apollo 15 green and yellow glasses and revision of the volatile-assisted fire-fountain theory. Geochim. Cosmochim. Acta 59, 201–215 (1995).

    Article Google Scholar

  16. Nicholis, M. G. & Rutherford, M. J. Graphite oxidation in the Apollo 17 orange glass magma: Implications for the generation of a lunar volcanic gas phase. Geochim. Cosmochim. Acta 73, 5905–5917 (2009).

    Article Google Scholar

  17. Delano, J. W. Apollo 15 green glass—Chemistry and possible origin. Proc. Lunar Planet. Sci. Conf. 10, 275–300 (1979).

    Google Scholar

  18. Dixon, J. E., Stolper, E. M. & Holloway, J. R. An experimental study of water and carbon dioxide solubilities in mid-ocean ridge basaltic liquids. Part I: Calibration and solubility models. J. Petrol. 36, 1607–1631 (1995).

    Google Scholar

  19. Dixon, J. E. & Stolper, E. M. An experimental study of water and carbon dioxide solubilities in mid-ocean ridge basaltic liquids. Part II: Applications to degassing. J. Petrol. 36, 1633–1646 (1995).

    Google Scholar

  20. Wetzel, D. T., Rutherford, M. J., Jacobsen, S. D., Hauri, E. H. & Saal, A. E. Degassing of reduced carbon from planetary basalts. Proc. Natl Acad. Sci. USA 110, 8010–8013 (2013).

    Article Google Scholar

  21. Newcombe, M. et al. Solubility and diffusivity of H-bearing species in lunar basaltic melts. Lunar Planet. Sci. Conf. 43, 2777 (2012).

    Google Scholar

  22. Ardia, P., Hirschmann, M. M., Withers, A. C. & Stanley, B. D. Solubility of CH4 in a synthetic basaltic melt, with applications to atmosphere–magma ocean–core partitioning of volatiles and to the evolution of the Martian atmosphere. Geochim. Cosmochim. Acta 114, 52–71 (2013).

    Article Google Scholar

  23. Hirschmann, M. M., Withers, A. C., Ardia, P. & Foley, N. T. Solubility of molecular hydrogen in silicate melts and consequences for volatile evolution of terrestrial planets. Earth Planet. Sci. Lett. 345–348, 38–48 (2012).

    Article Google Scholar

  24. Zhang, C. & Duan, Z. A model for C–O–H fluid in the Earth’s mantle. Geochim. Cosmochim. Acta 73, 2089–2102 (2009).

    Article Google Scholar

  25. Wieczorek, M. A. et al. The crust of the Moon as seen by GRAIL. Science 339, 671–675 (2013).

    Article Google Scholar

  26. Wilson, L. & Head, J. W. Deep generation of magmatic gas on the Moon and implications for pyroclastic eruptions. Geophys. Res. Lett. 30, 1605 (2003).

    Google Scholar

  27. Hess, P. C. & Parmentier, E. M. Thermal evolution of a thicker KREEP liquid layer. J. Geophys. Res. 106, 28023–28032 (2001).

    Article Google Scholar

  28. Longhi, J., Walker, D. & Hays, J. F. The distribution of Fe and Mg between olivine and lunar basaltic liquids. Geochim. Cosmochim. Acta 42, 1545–1558 (1978).

    Article Google Scholar

  29. Exley, R. A., Mattey, D. P., Clague, D. A. & Pillinger, C. T. Carbon isotope systematics of a mantle “hotspot”: A comparison of Loihi Seamount and MORB glasses. Earth Planet. Sci. Lett. 78, 189–199 (1986).

    Article Google Scholar

  30. Koga, K., Hauri, E. H., Hirschmann, M. M. & Bell, D. Hydrogen concentrationanalyses using SIMS and FTIR: Comparison and calibration fornominallyanhydrous minerals. Geochem. Geophys. Geosyst. 4, 1019 (2003).

    Article Google Scholar

  31. Hauri, E. H. et al. SIMS analysis of volatiles in silicate glasses: 1. Calibration,matrix effects and comparisons with FTIR. Chem. Geol. 183, 99–114 (2002).

    Article Google Scholar

  32. Silver, L. & Stolper, E. Water in albitic glasses. J. Petrol. 30, 667–709 (1989).

    Article Google Scholar

  33. Gaillard, F. & Scaillet, B. A theoretical framework for volcanic degassing chemistry in a comparative planetology perspective and implications for planetary atmospheres. Earth Planet. Sci. Lett. 403, 307–316 (2014).

    Article Google Scholar

  34. Vander Kaaden, K. E., Agee, C. B. & McCubbin, F. M. A comparison of meltdensity and compressibility of the green, yellow, and orange Apollo glassesasafunction of TiO2 content. Lunar Planet. Sci. Conf. 43, 1584 (2012).

    Google Scholar

  35. van Kan Parker, M. et al. Neutral buoyancy of titanium-rich melts in the deep lunar interior. Nature Geosci. 5, 186–189 (2012).

    Article Google Scholar

  36. Delano, J. W. Buoyancy-driven melt segregation in the Earth’s moon. I- Numerical results. Proc. Lunar Planet. Sci. Conf. 20, 3–12 (1990).

    Google Scholar

  37. Uhlmann, D. R., Cukierman, M., Scherera, G. & Hopper, R. W. Viscous flow, crystallization behavior and thermal history of orange soil material. Eos Trans. Am. Geophys. Union 54, 617–618 (1973).

    Google Scholar

  38. Chaussidon, M. & Robert, F. Lithium nucleosynthesis in the Sun inferred from the solar-wind 7Li/6Li ratio. Nature 402, 270–273 (1999).

    Article Google Scholar

  39. Hashizume, K., Chaussidon, M., Marty, B. & Terada, K. Protosolar carbon isotopic composition: Implications for the origin of meteoritic organics. Astrophys. J. 600, 480–484 (2004).

    Article Google Scholar

  40. Hashizume, K., Chaussidon, M., Marty, B. & Robert, F. Solar wind record on the Moon: Deciphering presolar from planetary nitrogen. Science 290, 1142–1145 (2000).

    Article Google Scholar

  41. Ozima, M. et al. Terrestrial nitrogen and noble gases in lunar soils. Nature 436, 655–659 (2005).

    Article Google Scholar

  42. Eugster, O., Terribilini, D., Polnau, E. & Kramers, J. The antiquity indicator argon-40/argon-36 for lunar surface samples calibrated by uranium-235-xenon-136 dating. Meteorit. Planet. Sci. 36, 1097–1115 (2001).

    Article Google Scholar

  43. Eugster, O. et al. The cosmic-ray exposure history of Shorty Crater samples—The age of Shorty Crater. Proc. Lunar Planet. Sci. Conf. 8, 3059–3082 (1977).

    Google Scholar

  44. Podosek, F. A. & Huneke, J. C. Argon in Apollo 15 green glass spherules (15426): 40Ar–39Ar age and trapped argon. Earth Planet. Sci. Lett. 19, 413–421 (1973).

    Article Google Scholar

  45. Eugster, O., Groegler, N., Eberhardt, P., Geiss, J. & Kiesl, W. Double drive tube 74001/2—A two-stage exposure model based on noble gases, chemical abundances and predicted production rates. Proc. Lunar Planet. Sci. Conf. 12, 541–558 (1982).

    Google Scholar

  46. Lakatos, S., Heymann, D. & Yaniv, A. Green spherules from Apollo 15: Inferences about their origin from inert gas measurements. The Moon 7, 132–148 (1973).

    Article Google Scholar

  47. Fleischer, R. L. & Hart, H. R. Jr Particle track record of Apollo 15 green soil and rock. Earth Planet. Sci. Lett. 18, 357–364 (1973).

    Article Google Scholar

  48. Spangler, R. R., Warasila, R. & Delano, J. W. 39Ar–40Ar ages for the Apollo 15 green and yellow volcanic glasses. J. Geophys. Res. 89, B487–B497 (1984).

    Article Google Scholar

  49. Spangler, R. R. & Delano, J. W. History of the Apollo 15 yellow impact glass and sample 15426 and 15427. J. Geophys. Res. 89, B478–B486 (1984).

    Article Google Scholar

  50. Kirsten, T., Horn, P., Heymann, D., Hubner, W. & Storzer, D. Apollo 17 crystalline rocks and soils: Rare gasses, ion track and ages. Eos Trans. Am. Geophys. Union 54, 595–597 (1973).

    Google Scholar

  51. Schaeffer, O. A. & Husain, L. Isotopic ages of Apollo 17 lunar material. Eos Trans. Am. Geophys. Union 54, 614 (1973).

    Google Scholar

  52. Hintenberger, H., Weber, H. W. & Schultz, L. Solar, spallogenic, and radiogenic rare gases in Apollo 17 soils and breccias. Proc. Lunar Planet. Sci. Conf. 5, 2005–2022 (1974).

    Google Scholar

  53. Merlivat, L., Lelu, M., Nief, G. & Roth, E. Spallation deuterium in rock 70215. Proc. Lunar Planet. Sci. Conf. 7, 649–658 (1976).

    Google Scholar

  54. Reedy, R. C. Cosmic-ray-produced stable nuclides: Various production rates and their implications. Proc. Lunar Planet. Sci. Conf. 12, 871–873 (1981).

    Google Scholar

Download references

Carbon content and degassing history of the lunar volcanic glasses (2024)
Top Articles
Latest Posts
Article information

Author: Terence Hammes MD

Last Updated:

Views: 5614

Rating: 4.9 / 5 (49 voted)

Reviews: 88% of readers found this page helpful

Author information

Name: Terence Hammes MD

Birthday: 1992-04-11

Address: Suite 408 9446 Mercy Mews, West Roxie, CT 04904

Phone: +50312511349175

Job: Product Consulting Liaison

Hobby: Jogging, Motor sports, Nordic skating, Jigsaw puzzles, Bird watching, Nordic skating, Sculpting

Introduction: My name is Terence Hammes MD, I am a inexpensive, energetic, jolly, faithful, cheerful, proud, rich person who loves writing and wants to share my knowledge and understanding with you.